Що таке радіус описаного кола прямокутного трикутника?

The окружність

окружність

Що таке центр окружності трикутника? Центр описаного кола трикутника визначається як точка, де перетинаються перпендикулярні бісектриси сторін цього конкретного трикутника. Іншими словами, точку збігу бісектриси сторін трикутника називають центром описаного кола.

https://byjus.com › математика › центр описаного кола трикутника

прямокутного трикутника лежить в середині гіпотенузи. The circumradius

circumradius

В геометрії описане коло або описане коло трикутника є коло, яке проходить через усі три вершини. Центр цього кола називається центром описаного кола трикутника, а його радіус — радіусом описаного кола.

https://en.wikipedia.org › wiki › Circumcircle

дорівнює половина довжини гіпотенузи.

Знаходження довжини описаного радіуса Нам просто потрібно знати довжини всіх сторін трикутника. Якщо трикутник має довжини сторін a, b і c, то радіус описаного кола має таку довжину: R = (abc) / √((a + b + c)(b + c – a)(c + a – b)(a + b – c))

Крок 1: Намалюйте перпендикулярні бісектриси сторін. Крок 2: Беручи точку O за центр, ми малюємо коло, яке торкається кожної вершини трикутника. Крок 3: Відстань OZ, OX і OY називається радіусом описаного кола. Отже, потрібне описане коло таке, як вище, а центр описаного кола — O.

У випадку рівностороннього трикутника, у якого всі сторони рівні, радіус описаного кола визначається формулою S√3.

Розрахунок:

  1. Радіус прямокутного трикутника = (P + B – H)/2.
  2. ⇒ P + B – H = 6 ….(1)
  3. Радіус описаного кола прямокутного трикутника = H/2.
  4. ⇒ P + B – 25 = 6.
  5. P + B = 31.

Центр описаного кола прямокутного трикутника лежить на середині гіпотенузи. Радіус описаного кола дорівнює половина довжини гіпотенузи.